PRINCIPLES OF ANALYSIS
LECTURE 4 - DEDEKIND CUTS

PAUL L. BAILEY

1. EXAMPLE OF STRONG INDUCTION

Let x € Z, x > 2. We say that x is prime if whenever x = ab for some positive
integers a and b, then either a =1 or b= 1.

Problem 1. Let z € Z be a positive integer, z > 2. Then x is the product of
prime integers.

Proof. Proceed by induction on z, and select z = 2 as the base case. Clearly 2
is prime, and so it is the product of primes.

Now assume that every integer between 2 and x — 1 is a product of prime
integers. If x is itself prime, we are done, so assume that x is not prime. Then
there exist a,b € Z such that x = ab with a # 1 and b # 1. Then a < x and
b < x, so a is the product of primes and b is the product of primes. Therefore x
is the product of primes. O

2. JARGON

Maximal and minimal (extremal) versus maximum and minimum (extremum).
Supremal and infimal versus supremum and infimum.
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3. LINEARLY ORDERED SETS

A linearly ordered set (A,<) is a set A together with a relation < on A
satisfying
(01) a<a;
(02) a <band b < a implies a = b;
(03) a <band b < cimplies a < ¢
(04) a<borb<a
for every a,b,c € A. We call < a linear order relation on A.
Let A and B be linearly ordered sets. A morphism from A to B is a function
f: A — B such that
a1 < az = f(ar) < f(az).
Let A be a linearly ordered set. If B C A, the B naturally inherits the linear
order, and becomes a linearly ordered set in its own right.
Let b € B. We say that b is an minimal element of B if b < ¢ for every ¢ € B.
Similarly, we say that b is a mazximal element of B if ¢ < b for every ¢ € B.
We say that A is dense if for every a1, a2 € A with a; < a9, there exists a € A
such that a1 < a < as.
Consider a partition {C,U} of A into two blocks such that ¢ < w for every
c € C and u € U. There are four possibilities:
(a) C has a maximal element and U has a minimal element;
(b) C has a maximal element and U does not have a minimal element;
(c) C does not have a maximal element and U has a minimal element;
(d) C does not have a maximal element and U does not have a minimal
element.
In cases (a), (c), and (d), we say that C is a cut.
In case (a), we say that C is a jump.
In case (c), we say that C is a hit.
In case (d), we say that C is a gap.

Observation 1. Let A be a linearly ordered set. Then A is dense if and only if
A has no jumps.

Observation 2. The rational numbers Q is dense.

Proof. The average of two distinct rational numbers is rational and is between
them. 0



4. DEDEKIND CUTS

A Dedekind cut is a cut in the rational number line; that is, it is a proper
nonempty subset C' C Q such that
(C1) ce C and v € Q \ C implies ¢ < u;
(C2) C has does not contain a maximal element.
The set of all Dedekind cuts is naturally ordered by inclusion. Moreover, this
is a total order

5. ADDITION OF CUTS
Let Cy and C5 be Dedekind cuts. Define their sum as
Ci+Co={x€Q|x=c+c for some ¢; € Cy and ¢y € Ca}.
Proposition 1. Let Cy,Cs C Q be cuts. Then C1 + Cs is a cut.

Proof. Set C' =C7 4+ Cs and U = Q \ C. Clearly C C Q is nonempty; we wish
to prove properties (C1) and (C2).

Let c € C and v € U. Then ¢ = ¢; + ¢ for some ¢; € C; and ¢y € Cs.
Suppose that © < ¢; then u — ¢o < ¢1, which implies that © — cs € Cy. Set
u—cog=a¢€ Cq;thenu=a+c € C; + Cy = C, a contradiction. Thus ¢ < u.

Since C; and Cy are cuts, ¢, and ¢y are not maximal elements in Cy and Cs,
respectively. Thus there exists a7 € C; and as € C5 such that ¢; < a; and
¢y < ag. Then a; + as € C, and ¢ < a1 + ag; thus ¢ is not maximal in C. O

Let M = {z € Q| z < 0}. Clearly M is a Dedekind cut.
Let C be a Dedekind cut, and set

—C = {2z € Q| x = —y for some nonminimal y € Q \. C'}.

Proposition 2. Let C,C1,C5,C3 C Q be cuts. Then —C' is a Dedekind cut,
and

(F1) (C1 +C2)+C3=C1 + (Cy + Cs);

(F2) C+ M =C;

(F3) C+(-C)=M;

(F4) C14+Cy =Cy + (1.

Proof. Exercise.
O

Define subtraction of Dedekind cuts in the usual way.
Let C be a Dedekind cut, and say that C is positive if M is a proper subset
of C, and that C' is negative if C' is a proper subset of M.



6. MULTIPLICATION OF CUTS
Let Cy and C5 be Dedekind cuts. Set
CixCo={x€Q]|z=cies for some ¢; € C; ~ M and ¢3 € Co ~ M} U M.
Now define their product by
Cy * Cy if C; and C5 are positive;

—((—=C1) % Cy) if C; is negative and Cy is positive;
Cr - Cy

—(Cy % (=C3)) if C is positive and Cs is negative;
(—=C4) % (—C%) if C1 and Cs are negative;
M if ), = M for Cy = M.

Proposition 3. Let Cy,Cs C Q be cuts. Then C7 - Cy is a cut.

Proof. Again set C = Cy + Cy and U = Q \ C, and prove properties (C1) and
(C2). We assume that C; and Cy are positive; the other cases require only
minor adjustments.

Let ¢ € C so that ¢ = cycs for some ¢; € C; N~ M and ¢y € Cy ~\ M; the other
cases are easy.

Let u € U; by definition, M C C so 0 < u. Suppose that u < ¢; then u/cy <
c¢1, which implies that u/ce € Cy. Set u/ca = a € Cq; then u = acg € C1-Cy = C,
a contradiction. Thus ¢ < u.

Since C7 and Cj5 are cuts, ¢; and ¢y are not maximal elements in Cy and Cj,
respectively. Thus there exists a; € C; and as € Cy such that ¢; < aq and
o < ag. Then ajas € C, and ¢ < ajas; thus ¢ is not maximal in C. O

Let I = {z € Q| z < 1}. Clearly I is a Dedekind cut.
Let C be a Dedekind cut different from M, and set

Cl'={recQ|z=y" for some y € C}.

Proposition 4. Let C,C;,Cy,C3 C Q be cuts. Then C~! is a Dedekind cut,
and
(F5) (Cl . CQ) . 03 = Cl . (02 . 03),‘
(F6) C-1=C;
(F7) C-(C~YH=1I;
(FS) Cl . CQ = Cg . Cl,'
(F9) C1-(C2 4 C3) = (Cr-Ca) + (Cr - Cy).

Proof. Exercise. O



7. ORDERING OF CUTS

Let € ={C Cc Q| C is a cut}. Define a relation < on € by

Proposition 5.
(01) C<C;
(02) C1 <£C,
(03) C1 <0y
(04) C1 <Oy

Moreover,

(05) C1 <Oy
(06) C; <y

Proof. Exercise.

Ci <Cy & Oy CCs.
LGt(j,CH,C&,C% € C. Then
and Cy < C7 implies Cy = Cy;

and Cy < C3 implies Cy < Cs;
or Cy < (1.

implies C1 + C3 < Co + C3;
implies C1 - C3 < Cy < C3 whenever M < Cj.
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