
PRINCIPLES OF ANALYSIS
LECTURE 4 - DEDEKIND CUTS

PAUL L. BAILEY

1. Example of Strong Induction

Let x ∈ Z, x ≥ 2. We say that x is prime if whenever x = ab for some positive
integers a and b, then either a = 1 or b = 1.

Problem 1. Let x ∈ Z be a positive integer, x ≥ 2. Then x is the product of
prime integers.

Proof. Proceed by induction on x, and select x = 2 as the base case. Clearly 2
is prime, and so it is the product of primes.

Now assume that every integer between 2 and x − 1 is a product of prime
integers. If x is itself prime, we are done, so assume that x is not prime. Then
there exist a, b ∈ Z such that x = ab with a 6= 1 and b 6= 1. Then a < x and
b < x, so a is the product of primes and b is the product of primes. Therefore x
is the product of primes. �

2. Jargon

Maximal and minimal (extremal) versus maximum and minimum (extremum).
Supremal and infimal versus supremum and infimum.
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3. Linearly Ordered Sets

A linearly ordered set (A,≤) is a set A together with a relation ≤ on A
satisfying
(O1) a ≤ a;
(O2) a ≤ b and b ≤ a implies a = b;
(O3) a ≤ b and b ≤ c implies a ≤ c;
(O4) a ≤ b or b ≤ a;

for every a, b, c ∈ A. We call ≤ a linear order relation on A.
Let A and B be linearly ordered sets. A morphism from A to B is a function

f : A → B such that
a1 ≤ a2 ⇒ f(a1) ≤ f(a2).

Let A be a linearly ordered set. If B ⊂ A, the B naturally inherits the linear
order, and becomes a linearly ordered set in its own right.

Let b ∈ B. We say that b is an minimal element of B if b ≤ c for every c ∈ B.
Similarly, we say that b is a maximal element of B if c ≤ b for every c ∈ B.

We say that A is dense if for every a1, a2 ∈ A with a1 < a2, there exists a ∈ A
such that a1 < a < a2.

Consider a partition {C,U} of A into two blocks such that c ≤ u for every
c ∈ C and u ∈ U . There are four possibilities:

(a) C has a maximal element and U has a minimal element;
(b) C has a maximal element and U does not have a minimal element;
(c) C does not have a maximal element and U has a minimal element;
(d) C does not have a maximal element and U does not have a minimal

element.
In cases (a), (c), and (d), we say that C is a cut.
In case (a), we say that C is a jump.
In case (c), we say that C is a hit.
In case (d), we say that C is a gap.

Observation 1. Let A be a linearly ordered set. Then A is dense if and only if
A has no jumps.

Observation 2. The rational numbers Q is dense.

Proof. The average of two distinct rational numbers is rational and is between
them. �
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4. Dedekind Cuts

A Dedekind cut is a cut in the rational number line; that is, it is a proper
nonempty subset C ⊂ Q such that
(C1) c ∈ C and u ∈ Q r C implies c < u;
(C2) C has does not contain a maximal element.
The set of all Dedekind cuts is naturally ordered by inclusion. Moreover, this

is a total order

5. Addition of Cuts

Let C1 and C2 be Dedekind cuts. Define their sum as

C1 + C2 = {x ∈ Q | x = c1 + c2 for some c1 ∈ C1 and c2 ∈ C2}.

Proposition 1. Let C1, C2 ⊂ Q be cuts. Then C1 + C2 is a cut.

Proof. Set C = C1 + C2 and U = Q r C. Clearly C ⊂ Q is nonempty; we wish
to prove properties (C1) and (C2).

Let c ∈ C and u ∈ U . Then c = c1 + c2 for some c1 ∈ C1 and c2 ∈ C2.
Suppose that u ≤ c; then u − c2 ≤ c1, which implies that u − c2 ∈ C1. Set
u− c2 = a ∈ C1; then u = a + c2 ∈ C1 + C2 = C, a contradiction. Thus c < u.

Since C1 and C2 are cuts, c1 and c2 are not maximal elements in C1 and C2,
respectively. Thus there exists a1 ∈ C1 and a2 ∈ C2 such that c1 < a1 and
c2 < a2. Then a1 + a2 ∈ C, and c < a1 + a2; thus c is not maximal in C. �

Let M = {x ∈ Q | x < 0}. Clearly M is a Dedekind cut.
Let C be a Dedekind cut, and set

−C = {x ∈ Q | x = −y for some nonminimal y ∈ Q r C}.

Proposition 2. Let C,C1, C2, C3 ⊂ Q be cuts. Then −C is a Dedekind cut,
and

(F1) (C1 + C2) + C3 = C1 + (C2 + C3);
(F2) C + M = C;
(F3) C + (−C) = M ;
(F4) C1 + C2 = C2 + C1.

Proof. Exercise.
�

Define subtraction of Dedekind cuts in the usual way.
Let C be a Dedekind cut, and say that C is positive if M is a proper subset

of C, and that C is negative if C is a proper subset of M .
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6. Multiplication of Cuts

Let C1 and C2 be Dedekind cuts. Set

C1 ∗ C2 = {x ∈ Q | x = c1c2 for some c1 ∈ C1 r M and c2 ∈ C2 r M} ∪M.

Now define their product by

C1 · C2 =



C1 ∗ C2 if C1 and C2 are positive;
−((−C1) ∗ C2) if C1 is negative and C2 is positive;
−(C1 ∗ (−C2)) if C1 is positive and C2 is negative;
(−C1) ∗ (−C2) if C1 and C2 are negative;
M if C1 = M for C2 = M.

Proposition 3. Let C1, C2 ⊂ Q be cuts. Then C1 · C2 is a cut.

Proof. Again set C = C1 + C2 and U = Q r C, and prove properties (C1) and
(C2). We assume that C1 and C2 are positive; the other cases require only
minor adjustments.

Let c ∈ C so that c = c1c2 for some c1 ∈ C1 r M and c2 ∈ C2 r M ; the other
cases are easy.

Let u ∈ U ; by definition, M ⊂ C so 0 ≤ u. Suppose that u ≤ c; then u/c2 ≤
c1, which implies that u/c2 ∈ C1. Set u/c2 = a ∈ C1; then u = ac2 ∈ C1 ·C2 = C,
a contradiction. Thus c < u.

Since C1 and C2 are cuts, c1 and c2 are not maximal elements in C1 and C2,
respectively. Thus there exists a1 ∈ C1 and a2 ∈ C2 such that c1 < a1 and
c2 < a2. Then a1a2 ∈ C, and c < a1a2; thus c is not maximal in C. �

Let I = {x ∈ Q | x < 1}. Clearly I is a Dedekind cut.
Let C be a Dedekind cut different from M , and set

C−1 = {x ∈ Q | x = y−1 for some y ∈ C}.

Proposition 4. Let C,C1, C2, C3 ⊂ Q be cuts. Then C−1 is a Dedekind cut,
and

(F5) (C1 · C2) · C3 = C1 · (C2 · C3);
(F6) C · I = C;
(F7) C · (C−1) = I;
(F8) C1 · C2 = C2 · C1;
(F9) C1 · (C2 + C3) = (C1 · C2) + (C1 · C3).

Proof. Exercise. �
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7. Ordering of Cuts

Let C = {C ⊂ Q | C is a cut}. Define a relation ≤ on C by

C1 ≤ C2 ⇔ C1 ⊂ C2.

Proposition 5. Let C,C1, C2, C3 ∈ C. Then
(O1) C ≤ C;
(O2) C1 ≤ C2 and C2 ≤ C1 implies C1 = C2;
(O3) C1 ≤ C2 and C2 ≤ C3 implies C1 ≤ C3;
(O4) C1 ≤ C2 or C2 ≤ C1.

Moreover,
(O5) C1 ≤ C2 implies C1 + C3 ≤ C2 + C3;
(O6) C1 ≤ C2 implies C1 · C3 ≤ C2 ≤ C3 whenever M ≤ C3.

Proof. Exercise. �
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