PRINCIPLES OF ANALYSIS LECTURE 4 - DEDEKIND CUTS

PAUL L. BAILEY

1. Example of Strong Induction

Let $x \in \mathbb{Z}$, $x \ge 2$. We say that x is *prime* if whenever x = ab for some positive integers a and b, then either a = 1 or b = 1.

Problem 1. Let $x \in \mathbb{Z}$ be a positive integer, $x \ge 2$. Then x is the product of prime integers.

Proof. Proceed by induction on x, and select x = 2 as the base case. Clearly 2 is prime, and so it is the product of primes.

Now assume that every integer between 2 and x - 1 is a product of prime integers. If x is itself prime, we are done, so assume that x is not prime. Then there exist $a, b \in \mathbb{Z}$ such that x = ab with $a \neq 1$ and $b \neq 1$. Then a < x and b < x, so a is the product of primes and b is the product of primes. Therefore x is the product of primes.

2. JARGON

Maximal and minimal (extremal) versus maximum and minimum (extremum). Supremal and infimal versus supremum and infimum.

A linearly ordered set (A, \leq) is a set A together with a relation \leq on A satisfying

(O1) $a \le a;$

(O2) $a \leq b$ and $b \leq a$ implies a = b;

(O3) $a \leq b$ and $b \leq c$ implies $a \leq c$;

(O4) $a \leq b$ or $b \leq a$;

for every $a, b, c \in A$. We call $\leq a$ linear order relation on A.

Let A and B be linearly ordered sets. A morphism from A to B is a function $f:A\to B$ such that

$$a_1 \le a_2 \Rightarrow f(a_1) \le f(a_2).$$

Let A be a linearly ordered set. If $B \subset A$, the B naturally inherits the linear order, and becomes a linearly ordered set in its own right.

Let $b \in B$. We say that b is an *minimal element* of B if $b \leq c$ for every $c \in B$. Similarly, we say that b is a *maximal element* of B if $c \leq b$ for every $c \in B$.

We say that A is *dense* if for every $a_1, a_2 \in A$ with $a_1 < a_2$, there exists $a \in A$ such that $a_1 < a < a_2$.

Consider a partition $\{C, U\}$ of A into two blocks such that $c \leq u$ for every $c \in C$ and $u \in U$. There are four possibilities:

- (a) C has a maximal element and U has a minimal element;
- (b) C has a maximal element and U does not have a minimal element;
- (c) C does not have a maximal element and U has a minimal element;
- (d) C does not have a maximal element and U does not have a minimal element.

In cases (a), (c), and (d), we say that C is a *cut*.

- In case (a), we say that C is a *jump*.
- In case (c), we say that C is a *hit*.
- In case (d), we say that C is a gap.

Observation 1. Let A be a linearly ordered set. Then A is dense if and only if A has no jumps.

Observation 2. The rational numbers \mathbb{Q} is dense.

Proof. The average of two distinct rational numbers is rational and is between them. $\hfill \Box$

4. Dedekind Cuts

A Dedekind cut is a cut in the rational number line; that is, it is a proper nonempty subset $C\subset\mathbb{Q}$ such that

(C1) $c \in C$ and $u \in \mathbb{Q} \setminus C$ implies c < u;

(C2) C has does not contain a maximal element.

The set of all Dedekind cuts is naturally ordered by inclusion. Moreover, this is a total order

5. Addition of Cuts

Let C_1 and C_2 be Dedekind cuts. Define their sum as

 $C_1 + C_2 = \{x \in \mathbb{Q} \mid x = c_1 + c_2 \text{ for some } c_1 \in C_1 \text{ and } c_2 \in C_2\}.$

Proposition 1. Let $C_1, C_2 \subset \mathbb{Q}$ be cuts. Then $C_1 + C_2$ is a cut.

Proof. Set $C = C_1 + C_2$ and $U = \mathbb{Q} \setminus C$. Clearly $C \subset \mathbb{Q}$ is nonempty; we wish to prove properties (C1) and (C2).

Let $c \in C$ and $u \in U$. Then $c = c_1 + c_2$ for some $c_1 \in C_1$ and $c_2 \in C_2$. Suppose that $u \leq c$; then $u - c_2 \leq c_1$, which implies that $u - c_2 \in C_1$. Set $u - c_2 = a \in C_1$; then $u = a + c_2 \in C_1 + C_2 = C$, a contradiction. Thus c < u.

Since C_1 and C_2 are cuts, c_1 and c_2 are not maximal elements in C_1 and C_2 , respectively. Thus there exists $a_1 \in C_1$ and $a_2 \in C_2$ such that $c_1 < a_1$ and $c_2 < a_2$. Then $a_1 + a_2 \in C$, and $c < a_1 + a_2$; thus c is not maximal in C. \Box

Let $M = \{x \in \mathbb{Q} \mid x < 0\}$. Clearly M is a Dedekind cut.

Let C be a Dedekind cut, and set

 $-C = \{ x \in \mathbb{Q} \mid x = -y \text{ for some nonminimal } y \in \mathbb{Q} \setminus C \}.$

Proposition 2. Let $C, C_1, C_2, C_3 \subset \mathbb{Q}$ be cuts. Then -C is a Dedekind cut, and

(F1) $(C_1 + C_2) + C_3 = C_1 + (C_2 + C_3);$ (F2) C + M = C;(F3) C + (-C) = M;(F4) $C_1 + C_2 = C_2 + C_1.$

Proof. Exercise.

Define subtraction of Dedekind cuts in the usual way.

Let C be a Dedekind cut, and say that C is *positive* if M is a proper subset of C, and that C is *negative* if C is a proper subset of M.

6. Multiplication of Cuts

Let C_1 and C_2 be Dedekind cuts. Set

 $C_1 * C_2 = \{x \in \mathbb{Q} \mid x = c_1 c_2 \text{ for some } c_1 \in C_1 \setminus M \text{ and } c_2 \in C_2 \setminus M\} \cup M.$ Now define their product by

	$C_1 * C_2$	if C_1 and C_2 are positive;
	$-((-C_1) * C_2)$	if C_1 is negative and C_2 is positive;
$C_1 \cdot C_2 = \langle$	$-(C_1 * (-C_2))$	if C_1 is positive and C_2 is negative;
	$(-C_1) * (-C_2)$	if C_1 and C_2 are negative;
	M if C_{2}	if C_1 and C_2 are positive; if C_1 is negative and C_2 is positive; if C_1 is positive and C_2 is negative; if C_1 and C_2 are negative; $1 = M$ for $C_2 = M$.

Proposition 3. Let $C_1, C_2 \subset \mathbb{Q}$ be cuts. Then $C_1 \cdot C_2$ is a cut.

Proof. Again set $C = C_1 + C_2$ and $U = \mathbb{Q} \setminus C$, and prove properties (C1) and (C2). We assume that C_1 and C_2 are positive; the other cases require only minor adjustments.

Let $c \in C$ so that $c = c_1 c_2$ for some $c_1 \in C_1 \setminus M$ and $c_2 \in C_2 \setminus M$; the other cases are easy.

Let $u \in U$; by definition, $M \subset C$ so $0 \leq u$. Suppose that $u \leq c$; then $u/c_2 \leq c_1$, which implies that $u/c_2 \in C_1$. Set $u/c_2 = a \in C_1$; then $u = ac_2 \in C_1 \cdot C_2 = C$, a contradiction. Thus c < u.

Since C_1 and C_2 are cuts, c_1 and c_2 are not maximal elements in C_1 and C_2 , respectively. Thus there exists $a_1 \in C_1$ and $a_2 \in C_2$ such that $c_1 < a_1$ and $c_2 < a_2$. Then $a_1a_2 \in C$, and $c < a_1a_2$; thus c is not maximal in C.

Let $I = \{x \in \mathbb{Q} \mid x < 1\}$. Clearly I is a Dedekind cut. Let C be a Dedekind cut different from M, and set

 $C^{-1} = \{ x \in \mathbb{Q} \mid x = y^{-1} \text{ for some } y \in C \}.$

Proposition 4. Let $C, C_1, C_2, C_3 \subset \mathbb{Q}$ be cuts. Then C^{-1} is a Dedekind cut, and

(F5) $(C_1 \cdot C_2) \cdot C_3 = C_1 \cdot (C_2 \cdot C_3);$

$$(\mathbf{F6}) \ C \cdot I = C;$$

(**F7**)
$$C \cdot (C^{-1}) = I;$$

- (F8) $C_1 \cdot C_2 = C_2 \cdot C_1;$
- **(F9)** $C_1 \cdot (C_2 + C_3) = (C_1 \cdot C_2) + (C_1 \cdot C_3).$

Proof. Exercise.

7. Ordering of Cuts

Let $\mathcal{C} = \{ C \subset \mathbb{Q} \mid C \text{ is a cut} \}$. Define a relation \leq on \mathcal{C} by

 $C_1 \leq C_2 \Leftrightarrow C_1 \subset C_2.$

Proposition 5. Let $C, C_1, C_2, C_3 \in \mathbb{C}$. Then

(01) $C \leq C$; (02) $C_1 \leq C_2$ and $C_2 \leq C_1$ implies $C_1 = C_2$; (03) $C_1 \leq C_2$ and $C_2 \leq C_3$ implies $C_1 \leq C_3$; (04) $C_1 \leq C_2$ or $C_2 \leq C_1$. Moreover, (05) $C_1 \leq C_2$ implies $C_1 + C_3 \leq C_2 + C_3$; (06) $C_1 \leq C_2$ implies $C_1 \cdot C_3 \leq C_2 \leq C_3$ whenever $M \leq C_3$.

Proof. Exercise.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$